Extra-matrix Mg2+ limits Ca2+ uptake and modulates Ca2+ uptake-independent respiration and redox state in cardiac isolated mitochondria.
نویسندگان
چکیده
Cardiac mitochondrial matrix (m) free Ca(2+) ([Ca(2+)]m) increases primarily by Ca(2+) uptake through the Ca(2+) uniporter (CU). Ca(2+) uptake via the CU is attenuated by extra-matrix (e) Mg(2+) ([Mg(2+)]e). How [Ca(2+)]m is dynamically modulated by interacting physiological levels of [Ca(2+)]e and [Mg(2+)]e and how this interaction alters bioenergetics are not well understood. We postulated that as [Mg(2+)]e modulates Ca(2+) uptake via the CU, it also alters bioenergetics in a matrix Ca(2+)-induced and matrix Ca(2+)-independent manner. To test this, we measured changes in [Ca(2+)]e, [Ca(2+)]m, [Mg(2+)]e and [Mg(2+)]m spectrofluorometrically in guinea pig cardiac mitochondria in response to added CaCl2 (0-0.6 mM; 1 mM EGTA buffer) with/without added MgCl2 (0-2 mM). In parallel, we assessed effects of added CaCl2 and MgCl2 on NADH, membrane potential (ΔΨm), and respiration. We found that ≥0.125 mM MgCl2 significantly attenuated CU-mediated Ca(2+) uptake and [Ca(2+)]m. Incremental [Mg(2+)]e did not reduce initial Ca(2+)uptake but attenuated the subsequent slower Ca(2+) uptake, so that [Ca(2+)]m remained unaltered over time. Adding CaCl2 without MgCl2 to attain a [Ca(2+)]m from 46 to 221 nM enhanced state 3 NADH oxidation and increased respiration by 15 %; up to 868 nM [Ca(2+)]m did not additionally enhance NADH oxidation or respiration. Adding MgCl2 did not increase [Mg(2+)]m but it altered bioenergetics by its direct effect to decrease Ca(2+) uptake. However, at a given [Ca(2+)]m, state 3 respiration was incrementally attenuated, and state 4 respiration enhanced, by higher [Mg(2+)]e. Thus, [Mg(2+)]e without a change in [Mg(2+)]m can modulate bioenergetics independently of CU-mediated Ca(2+) transport.
منابع مشابه
Mitochondrial free [Ca2+] increases during ATP/ADP antiport and ADP phosphorylation: exploration of mechanisms.
ADP influx and ADP phosphorylation may alter mitochondrial free [Ca2+] ([Ca2+](m)) and consequently mitochondrial bioenergetics by several postulated mechanisms. We tested how [Ca2+](m) is affected by H2PO4(-) (P(i)), Mg2+, calcium uniporter activity, matrix volume changes, and the bioenergetic state. We measured [Ca2+](m), membrane potential, redox state, matrix volume, pH(m), and O2 consumpti...
متن کاملOxygen-bridged dinuclear ruthenium amine complex specifically inhibits Ca2+ uptake into mitochondria in vitro and in situ in single cardiac myocytes.
Ruthenium red is a well known inhibitor of Ca2+ uptake into mitochondria in vitro. However, its utility as an inhibitor of Ca2+ uptake into mitochondria in vivo or in situ in intact cells is limited because of its inhibitory effects on sarcoplasmic reticulum Ca2+ release channel and other cellular processes. We have synthesized a ruthenium derivative and found it to be an oxygen-bridged dinucle...
متن کاملA Regulator of Mitochondrial Calcium Cycling*
Steady-state free Ca2+ concentrations have been measured with a Ca2+ electrode using suspensions of isolated rat liver mitochondria or saponin-treated hepatocytes. Mitochondria, when incubated in the presence of Mg2+ and MgATP2-, maintain a steady-state PCB2+ (-log [Ca2+]) of approximately 6.1 (0.8 FM). Addition of spermine lowered this value to a pCa2+ of 6.6 (0.25 pM). Spermine was the most...
متن کاملExercise-induced alterations of hepatic mitochondrial function.
In order to examine the effect of a single bout of exercise on hepatic mitochondrial function, starved untrained male rats swam at 34-35 degrees C with a tail weight (5% of body wt.) for 100 min. The rates of ADP-stimulated and uncoupled respiration were higher in the mitochondria isolated from the exercised rats regardless of the substrate utilized. Succinate-linked Ca2+ uptake was 48% greater...
متن کاملRegulation of total mitochondrial Ca2+ in perfused liver is independent of the permeability transition pore.
Triggering of the permeability transition pore (PTP) in isolated mitochondria causes release of matrix Ca2+, ions, and metabolites, and it has been proposed that the PTP mediates mitochondrial Ca2+ release in intact cells. To study the role of the PTP in mitochondrial energy metabolism, the mitochondrial content of Ca2+, Mg2+, ATP, and ADP was determined in hormonally stimulated rat livers perf...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of bioenergetics and biomembranes
دوره 45 3 شماره
صفحات -
تاریخ انتشار 2013